organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(2*H*-Benzotriazol-2-yl)-4-methylphenyl diphenylphosphinate

Yi-Chang Liu, Chia-Her Lin and Bao-Tsan Ko*

Department of Chemistry, Chung Yuan Christian University, Chung-Li 320, Taiwan Correspondence e-mail: btko@cycu.edu.tw

Received 21 July 2009; accepted 28 July 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.086; data-to-parameter ratio = 13.2.

In the title molecule, $C_{25}H_{20}N_3O_2P$, the dihedral angle between the mean planes of the benzotriazol ring system and the *N*-bonded benzene ring is 45.8 (2)°. All but one of the angles at the P atom show slight distortions from an ideal tetrahedral geometry.

Related literature

For background to the use of 2-(2*H*-benzotriazol-2*H*-yl)-phenol (BTP-H) derivatives, see: Li *et al.* (2009); Tsai *et al.* (2009). For related structures, see: Al-Farhan (1992); Cheng *et al.* (2007).

Experimental

Crystal data C₂₅H₂₀N₃O₂P

 $M_r = 425.41$

Orthorhombic, <i>Pca</i> 2 ₁
a = 12.7691 (7) Å
b = 9.4064 (5) Å
c = 18.6362 (10) Å
V = 2238.4 (2) Å ³

Data collection

Bruker SMART-1000 CCD	11920 measured reflections
diffractometer	3684 independent reflections
Absorption correction: multi-scan	3343 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.034$
$T_{\min} = 0.963, T_{\max} = 0.974$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.086$	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
S = 1.05	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
3684 reflections	Absolute structure: Flack (1983),
280 parameters	1412 Friedel pairs
1 restraint	Flack parameter: 0.01 (7)

Z = 4

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.15 \text{ mm}$

 $\mu = 0.15 \text{ mm}^{-1}$

T = 296 K

Table 1Selected bond angles (°).

O2-P-O1	115.53 (10)	O2-P-C20	112.37 (9)
O2-P-C14	113.48 (8)	O1-P-C20	105.04 (8)
O1-P-C14	100.15 (8)	C14-P-C20	109.30 (8)

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We gratefully acknowledge the financial support in part from the National Science Council, Taiwan (NSC97–2113-M-033–005-MY2) and in part from the project of the specific research fields in the Chung Yuan Christian University, Taiwan (No. CYCU-97-CR–CH).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2871).

References

- Al-Farhan, K. A. (1992). J. Crystallogr. Spectrosc. Res. 22, 687-689.
- Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cheng, Y.-H., Weng, C.-M. & Hong, F.-E. (2007). Tetrahedron, 63, 12277–12285.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Li, C.-Y., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, m670.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tsai, C.-Y., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, m619.

Acta Cryst. (2009). E65, o2058 [doi:10.1107/S1600536809029870]

2-(2H-Benzotriazol-2-yl)-4-methylphenyl diphenylphosphinate

Y.-C. Liu, C.-H. Lin and B.-T. Ko

Comment

2-(2*H*-benzotriazol-2*H*-yl)phenol (BTP-H) derivatives are widely used as ultraviolet (UV) absorbers for the protection of commercially important synthetic plastics and fibers against the UV light in industry. In terms of coordination chemistry, the benzotriazol-phenolate group can provide N, O-bidentate chelation to stabilize the transition metal or main group metal complexes. For instance, our group has successfully synthesized and structural characterized the Pd complex (II) with 4-methyl-2-(2*H*-benzotriazol-2-yl)-phenolate ligands (Tsai *et al.*, 2009). Recently, we also reported the synthesis and crystal structure of an Al(III) complex with the 4-methyl-2-(2*H*-benzotriazol-2-yl)-phenolate ligands (Li *et al.*, 2009). Most recently, Cheng *et al.* (2007) reported some palladium complexes of monodentate phosphinite ligands and these complexes in the presence of Pd(OAc)₂ have been demonstrated effectively to catalyze Suzuki–Miyaura cross-coupling reactions. Therefore, our group is interested in the synthesis and preparation of the phosphinite functionalized benzotriazol-phenolate ligands derived from BTP-H. Here, we report the synthesis and crystal structure of the title compound, (**I**), a potential ligand for the preparation of metal complexes.

The molecule of (I) is composed of a benzotriazol-phenolate moiety and a diphenylphosphine oxide functionalized group (Fig. 1). The dihedral angle between the planes of the benzotriazole moiety and the benzene ring of the phenoxy group is $45.8 (2)^{\circ}$. The P atom is bonded one O atom of the phosphine oxide, one phenoxy O atom and two C atoms from two phenyl groups, forming a slightly distorted tetrahedral environment. The P-O and P=O bond distances bond distances are similar to those found in the crystal structure of triphenyphosphine oxide (Al-Farhan, 1992).

Experimental

The title compound I was synthesized by the following procedure (Fig. 2): To a rapidly stirred solution of 4-methyl-2-(2*H*-benzotriazol-2-yl)phenol (2.48 g, 10.0 mmol) in toluene (20 ml), Ph₂PCl (1.8 ml, 10.0 mmol) and NEt₃ (20.0 mmol, 2.02 g) was slowly added. The mixed solution was stirred at 363 K for 18 h. Subsequently, the HNEt₃Cl salt was filtered and the resulting solution was dried under reduced pressure. The resulting oily product was re-dissolved in MeOH (20 ml) and H₂O₂ (1 ml) was added. The final solution was stirred at room temperature for another 1 h and the volatile components were removed in *vacuo*. The residue was extracted with ethyl acetate (50 ml) and the extract was dried under vacuum to give oily, white solids. Colorless crystals were obtained on cooling the saturated Et₂O solution at 253 K overnight. ¹H NMR (CDCl₃, p.p.m.): δ 7.10–7.97 (17*H*, m, Ar*H*), 2.35 (3*H*, s, CH₃).

Refinement

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 and 0.96 Å with $U_{iso}(H) = 1.2$ and $1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of **I** with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. The synthetic procedure of the title compound.

 $F_{000} = 888$

 $\theta = 2.7 - 26.0^{\circ}$

 $\mu = 0.15 \text{ mm}^{-1}$

Block, colourless

 $0.30 \times 0.20 \times 0.15 \text{ mm}$

T = 296 K

 $D_{\rm x} = 1.262 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6495 reflections

2-(2H-Benzotriazol-2-yl)-4-methylphenyl diphenylphosphinate

Crystal data

 $C_{25}H_{20}N_{3}O_{2}P$ $M_{r} = 425.41$ Orthorhombic, $Pca2_{1}$ Hall symbol: P 2c -2ac a = 12.7691 (7) Å b = 9.4064 (5) Å c = 18.6362 (10) Å V = 2238.4 (2) Å³ Z = 4

Data collection

Bruker SMART-1000 CCD diffractometer	3684 independent reflections
Radiation source: fine-focus sealed tube	3343 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.034$
T = 296 K	$\theta_{\text{max}} = 26.0^{\circ}$
ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -15 \rightarrow 14$
$T_{\min} = 0.963, T_{\max} = 0.974$	$k = -11 \rightarrow 11$
11920 measured reflections	$l = -19 \rightarrow 22$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.032$	$w = 1/[\sigma^2(F_0^2) + (0.058P)^2]$

	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.086$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.05	$\Delta \rho_{max} = 0.14 \text{ e} \text{ Å}^{-3}$
3684 reflections	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$
280 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 1412 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.01 (7)
Secondary atom site location: difference Fourier map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Р	-0.78562 (3)	-0.27388 (4)	-0.41236 (3)	0.04851 (13)
O1	-0.74629 (11)	-0.25123 (13)	-0.49386 (7)	0.0523 (3)
O2	-0.89556 (10)	-0.23744 (14)	-0.39862 (10)	0.0724 (4)
N1	-0.54417 (13)	-0.30745 (18)	-0.54995 (9)	0.0573 (4)
N2	-0.58778 (12)	-0.21611 (16)	-0.59589 (8)	0.0510(3)
N3	-0.56809 (15)	-0.23649 (17)	-0.66558 (9)	0.0617 (4)
C1	-0.73324 (14)	-0.11822 (19)	-0.52534 (11)	0.0498 (4)
C2	-0.65289 (15)	-0.10047 (19)	-0.57421 (10)	0.0536 (4)
C3	-0.63716 (18)	0.0309 (2)	-0.60682 (12)	0.0641 (5)
H3B	-0.5823	0.0422	-0.6391	0.077*
C4	-0.7020 (2)	0.1451 (2)	-0.59187 (13)	0.0675 (6)
C5	-0.78319 (19)	0.1244 (2)	-0.54483 (14)	0.0710 (6)
H5A	-0.8283	0.1996	-0.5351	0.085*
C6	-0.80000 (17)	-0.0052 (2)	-0.51143 (12)	0.0652 (5)
H6A	-0.8558	-0.0163	-0.4798	0.078*
C7	-0.49173 (14)	-0.3965 (2)	-0.59453 (10)	0.0543 (4)
C8	-0.4308 (2)	-0.5185 (3)	-0.57796 (13)	0.0768 (6)
H8A	-0.4209	-0.5492	-0.5310	0.092*
С9	-0.3876 (2)	-0.5879 (3)	-0.63507 (16)	0.0861 (7)
H9A	-0.3471	-0.6683	-0.6265	0.103*
C10	-0.4020 (2)	-0.5427 (3)	-0.70636 (15)	0.0862 (7)
H10A	-0.3709	-0.5943	-0.7432	0.103*
C11	-0.45980 (19)	-0.4263 (3)	-0.72317 (13)	0.0762 (6)

H11A	-0.4683	-0.3963	-0.7704	0.091*
C12	-0.50631 (15)	-0.3531 (2)	-0.66534 (11)	0.0561 (4)
C13	-0.6860 (3)	0.2874 (3)	-0.6283 (2)	0.0984 (9)
H13A	-0.7377	0.3535	-0.6114	0.148*
H13B	-0.6929	0.2760	-0.6793	0.148*
H13C	-0.6173	0.3227	-0.6173	0.148*
C14	-0.75764 (14)	-0.45832 (18)	-0.40115 (10)	0.0511 (4)
C15	-0.66460 (14)	-0.5202 (2)	-0.42229 (12)	0.0612 (5)
H15A	-0.6144	-0.4658	-0.4459	0.073*
C16	-0.64533 (18)	-0.6626 (2)	-0.40869 (16)	0.0746 (6)
H16A	-0.5822	-0.7036	-0.4226	0.089*
C17	-0.7204 (3)	-0.7429 (2)	-0.37445 (17)	0.0840 (8)
H17A	-0.7086	-0.8391	-0.3663	0.101*
C18	-0.8118 (3)	-0.6822 (3)	-0.35251 (19)	0.0982 (9)
H18A	-0.8609	-0.7367	-0.3281	0.118*
C19	-0.83227 (19)	-0.5408 (3)	-0.36614 (16)	0.0811 (7)
H19A	-0.8956	-0.5008	-0.3520	0.097*
C20	-0.69692 (13)	-0.17140 (17)	-0.35845 (9)	0.0460 (4)
C21	-0.73139 (19)	-0.1249 (2)	-0.29154 (12)	0.0636 (6)
H21A	-0.7985	-0.1470	-0.2757	0.076*
C22	-0.6643 (2)	-0.0451 (3)	-0.24858 (12)	0.0791 (7)
H22A	-0.6865	-0.0153	-0.2035	0.095*
C23	-0.5668 (2)	-0.0102 (2)	-0.27184 (15)	0.0770 (6)
H23A	-0.5234	0.0449	-0.2430	0.092*
C24	-0.53189 (18)	-0.0559 (2)	-0.33777 (13)	0.0677 (5)
H24A	-0.4653	-0.0310	-0.3535	0.081*
C25	-0.59558 (14)	-0.1389 (2)	-0.38062 (11)	0.0562 (4)
H25A	-0.5708	-0.1731	-0.4243	0.067*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Р	0.0399 (2)	0.0488 (2)	0.0569 (3)	-0.00062 (15)	0.0029 (2)	-0.0003 (2)
01	0.0566 (7)	0.0499 (6)	0.0504 (7)	0.0003 (5)	-0.0023 (6)	0.0000 (5)
O2	0.0446 (7)	0.0726 (9)	0.0998 (14)	0.0035 (6)	0.0074 (7)	0.0013 (8)
N1	0.0617 (9)	0.0667 (10)	0.0436 (8)	0.0101 (8)	-0.0017 (7)	0.0031 (7)
N2	0.0576 (9)	0.0532 (8)	0.0424 (8)	0.0008 (6)	-0.0003 (6)	0.0025 (6)
N3	0.0772 (11)	0.0662 (10)	0.0416 (9)	0.0011 (8)	0.0019 (8)	0.0047 (7)
C1	0.0529 (10)	0.0484 (10)	0.0481 (10)	0.0013 (7)	-0.0086 (8)	-0.0012 (8)
C2	0.0621 (10)	0.0524 (10)	0.0462 (10)	0.0023 (8)	-0.0080 (8)	0.0007 (8)
C3	0.0749 (13)	0.0586 (12)	0.0588 (12)	-0.0026 (9)	-0.0006 (9)	0.0065 (9)
C4	0.0864 (14)	0.0510(11)	0.0650 (14)	0.0023 (9)	-0.0146 (11)	0.0061 (10)
C5	0.0842 (14)	0.0547 (11)	0.0742 (15)	0.0183 (10)	-0.0125 (12)	-0.0007 (10)
C6	0.0687 (12)	0.0643 (12)	0.0625 (13)	0.0107 (9)	-0.0018 (10)	0.0021 (10)
C7	0.0533 (10)	0.0600 (10)	0.0498 (10)	0.0030 (8)	-0.0007 (8)	-0.0018 (8)
C8	0.0810 (13)	0.0845 (15)	0.0650 (13)	0.0261 (12)	0.0004 (12)	0.0052 (12)
C9	0.0862 (16)	0.0871 (16)	0.0849 (18)	0.0310 (13)	0.0016 (14)	-0.0089 (14)
C10	0.0905 (17)	0.0927 (17)	0.0752 (17)	0.0148 (14)	0.0108 (13)	-0.0277 (14)

C11	0.0877 (16)	0.0905 (17)	0.0504 (12)	0.0048 (13)	0.0065 (11)	-0.0092 (11)
C12	0.0598 (10)	0.0610 (11)	0.0476 (10)	-0.0026 (8)	0.0029 (8)	-0.0012 (8)
C13	0.124 (2)	0.0571 (13)	0.114 (2)	0.0010 (14)	0.0021 (19)	0.0205 (14)
C14	0.0516 (8)	0.0477 (8)	0.0540 (11)	-0.0075 (7)	-0.0029 (8)	-0.0012 (8)
C15	0.0549 (10)	0.0556 (10)	0.0731 (14)	0.0019 (7)	0.0007 (9)	0.0058 (10)
C16	0.0793 (13)	0.0602 (11)	0.0842 (15)	0.0131 (10)	-0.0135 (13)	-0.0024 (12)
C17	0.110 (2)	0.0502 (12)	0.0916 (19)	-0.0074 (12)	-0.0226 (15)	0.0083 (12)
C18	0.112 (2)	0.0664 (14)	0.116 (3)	-0.0274 (15)	0.0132 (18)	0.0180 (15)
C19	0.0705 (13)	0.0671 (14)	0.106 (2)	-0.0147 (10)	0.0195 (13)	0.0097 (13)
C20	0.0529 (9)	0.0382 (8)	0.0467 (9)	0.0036 (7)	0.0034 (7)	-0.0001 (7)
C21	0.0804 (16)	0.0569 (12)	0.0534 (13)	0.0099 (10)	0.0133 (10)	0.0009 (9)
C22	0.122 (2)	0.0656 (14)	0.0500 (12)	0.0125 (14)	-0.0011 (13)	-0.0161 (11)
C23	0.0982 (17)	0.0576 (12)	0.0752 (15)	-0.0024 (11)	-0.0260 (14)	-0.0107 (11)
C24	0.0624 (12)	0.0676 (13)	0.0733 (14)	-0.0109 (9)	-0.0138 (10)	-0.0027 (11)
C25	0.0527 (9)	0.0622 (11)	0.0536 (10)	-0.0032 (8)	0.0018 (8)	-0.0064 (8)

Geometric parameters (Å, °)

Р—О2	1.4675 (14)	C11—C12	1.410 (3)
Р—О1	1.6138 (15)	C11—H11A	0.9300
PC14	1.7835 (18)	С13—Н13А	0.9600
Р—С20	1.7948 (18)	С13—Н13В	0.9600
O1—C1	1.392 (2)	С13—Н13С	0.9600
N1—N2	1.335 (2)	C14—C15	1.380 (3)
N1—C7	1.357 (2)	C14—C19	1.391 (3)
N2—N3	1.337 (2)	C15—C16	1.385 (3)
N2—C2	1.427 (2)	C15—H15A	0.9300
N3—C12	1.351 (3)	C16—C17	1.377 (4)
C1—C2	1.382 (3)	C16—H16A	0.9300
C1—C6	1.387 (3)	C17—C18	1.362 (4)
C2—C3	1.392 (3)	C17—H17A	0.9300
C3—C4	1.385 (3)	C18—C19	1.379 (4)
С3—Н3В	0.9300	C18—H18A	0.9300
C4—C5	1.371 (4)	C19—H19A	0.9300
C4—C13	1.515 (3)	C20—C25	1.392 (3)
C5—C6	1.385 (3)	C20—C21	1.393 (3)
С5—Н5А	0.9300	C21—C22	1.392 (4)
С6—Н6А	0.9300	C21—H21A	0.9300
C7—C12	1.394 (3)	C22—C23	1.359 (4)
С7—С8	1.420 (3)	C22—H22A	0.9300
C8—C9	1.365 (4)	C23—C24	1.376 (4)
C8—H8A	0.9300	C23—H23A	0.9300
C9—C10	1.407 (4)	C24—C25	1.381 (3)
С9—Н9А	0.9300	C24—H24A	0.9300
C10-C11	1.357 (4)	C25—H25A	0.9300
C10—H10A	0.9300		
O2—P—O1	115.53 (10)	N3—C12—C7	108.62 (16)
O2—P—C14	113.48 (8)	N3—C12—C11	129.8 (2)
O1—P—C14	100.15 (8)	C7—C12—C11	121.60 (19)

O2—P—C20	112.37 (9)	C4—C13—H13A	109.5
O1—P—C20	105.04 (8)	С4—С13—Н13В	109.5
C14—P—C20	109.30 (8)	H13A—C13—H13B	109.5
C1—O1—P	123.55 (12)	C4—C13—H13C	109.5
N2—N1—C7	102.17 (15)	H13A—C13—H13C	109.5
N1—N2—N3	116.91 (16)	H13B—C13—H13C	109.5
N1—N2—C2	123.51 (16)	C15—C14—C19	119.22 (18)
N3—N2—C2	119.59 (15)	C15—C14—P	123.30 (13)
N2—N3—C12	102.88 (15)	C19—C14—P	117.40 (16)
C2—C1—C6	119.13 (19)	C14—C15—C16	120.55 (19)
C2-C1-O1	118.37 (16)	C14—C15—H15A	119.7
C6—C1—O1	122.45 (18)	C16-C15-H15A	119.7
C1—C2—C3	120.14 (18)	C17—C16—C15	119.5 (2)
C1—C2—N2	121.79 (16)	C17—C16—H16A	120.3
C3—C2—N2	117.97 (18)	C15—C16—H16A	120.3
C4—C3—C2	121.0 (2)	C18—C17—C16	120.3 (2)
С4—С3—Н3В	119.5	С18—С17—Н17А	119.8
С2—С3—Н3В	119.5	С16—С17—Н17А	119.8
C5—C4—C3	118.1 (2)	C17—C18—C19	120.8 (2)
C5—C4—C13	120.9 (2)	C17—C18—H18A	119.6
C3—C4—C13	121.0 (3)	C19—C18—H18A	119.6
C4—C5—C6	122.0 (2)	C18—C19—C14	119.6 (2)
C4—C5—H5A	119.0	C18—C19—H19A	120.2
С6—С5—Н5А	119.0	C14—C19—H19A	120.2
C5—C6—C1	119.7 (2)	C25—C20—C21	119.38 (18)
С5—С6—Н6А	120.2	C25—C20—P	122.57 (13)
С1—С6—Н6А	120.2	C21—C20—P	118.05 (15)
N1—C7—C12	109.42 (16)	C22—C21—C20	119.3 (2)
N1—C7—C8	129.50 (19)	C22—C21—H21A	120.3
C12—C7—C8	121.07 (18)	C20—C21—H21A	120.3
C9—C8—C7	116.0 (2)	C23—C22—C21	120.7 (2)
С9—С8—Н8А	122.0	C23—C22—H22A	119.7
С7—С8—Н8А	122.0	C21—C22—H22A	119.7
C8—C9—C10	122.6 (2)	C22—C23—C24	120.4 (2)
С8—С9—Н9А	118.7	C22—C23—H23A	119.8
С10—С9—Н9А	118.7	C24—C23—H23A	119.8
С11—С10—С9	122.2 (2)	C23—C24—C25	120.1 (2)
C11—C10—H10A	118.9	C23—C24—H24A	119.9
C9—C10—H10A	118.9	C25—C24—H24A	119.9
C10-C11-C12	116.5 (2)	C24—C25—C20	119.98 (19)
C10-C11-H11A	121.7	C24—C25—H25A	120.0
C12—C11—H11A	121.7	C20—C25—H25A	120.0
O2—P—O1—C1	69.76 (16)	N1-C7-C12-N3	0.0 (2)
C14—P—O1—C1	-167.96 (14)	C8—C7—C12—N3	179.2 (2)
C20—P—O1—C1	-54.64 (15)	N1—C7—C12—C11	179.55 (19)
C7—N1—N2—N3	-0.5 (2)	C8—C7—C12—C11	-1.2 (3)
C7—N1—N2—C2	179.47 (16)	C10-C11-C12-N3	-179.2 (2)
N1—N2—N3—C12	0.5 (2)	C10—C11—C12—C7	1.3 (3)
C2—N2—N3—C12	-179.50 (16)	O2—P—C14—C15	169.14 (18)

P-01-C1-C2	145.53 (15)	O1—P—C14—C15	45.41 (19)
P-01-C1-C6	-36.9 (2)	C20—P—C14—C15	-64.59 (19)
C6—C1—C2—C3	2.4 (3)	O2—P—C14—C19	-14.0 (2)
O1—C1—C2—C3	-179.93 (17)	O1—P—C14—C19	-137.76 (18)
C6—C1—C2—N2	-174.01 (18)	C20—P—C14—C19	112.24 (19)
O1—C1—C2—N2	3.7 (3)	C19—C14—C15—C16	-0.2 (3)
N1—N2—C2—C1	-47.2 (3)	P-C14-C15-C16	176.57 (17)
N3—N2—C2—C1	132.8 (2)	C14—C15—C16—C17	0.7 (4)
N1—N2—C2—C3	136.33 (19)	C15—C16—C17—C18	-1.6 (4)
N3—N2—C2—C3	-43.7 (2)	C16—C17—C18—C19	2.1 (5)
C1—C2—C3—C4	-0.9 (3)	C17—C18—C19—C14	-1.6 (5)
N2-C2-C3-C4	175.64 (18)	C15—C14—C19—C18	0.6 (4)
C2—C3—C4—C5	-1.0 (3)	P-C14-C19-C18	-176.3 (2)
C2—C3—C4—C13	-179.0 (2)	O2—P—C20—C25	-151.46 (15)
C3—C4—C5—C6	1.4 (4)	O1—P—C20—C25	-25.08 (17)
C13—C4—C5—C6	179.3 (3)	C14—P—C20—C25	81.63 (17)
C4—C5—C6—C1	0.1 (4)	O2—P—C20—C21	29.44 (18)
C2-C1-C6-C5	-2.0 (3)	O1—P—C20—C21	155.82 (14)
O1—C1—C6—C5	-179.60 (18)	C14—P—C20—C21	-97.47 (16)
N2—N1—C7—C12	0.33 (19)	C25—C20—C21—C22	1.0 (3)
N2—N1—C7—C8	-178.8 (2)	P-C20-C21-C22	-179.91 (17)
N1—C7—C8—C9	179.6 (2)	C20—C21—C22—C23	1.2 (3)
С12—С7—С8—С9	0.6 (3)	C21—C22—C23—C24	-1.4 (4)
C7—C8—C9—C10	0.0 (4)	C22—C23—C24—C25	-0.6 (4)
C8—C9—C10—C11	0.2 (5)	C23—C24—C25—C20	2.7 (3)
C9—C10—C11—C12	-0.8 (4)	C21—C20—C25—C24	-2.9 (3)
N2—N3—C12—C7	-0.3 (2)	P-C20-C25-C24	178.04 (16)
N2—N3—C12—C11	-179.8 (2)		

Fig. 2

